
DevOps
and
Agile Carlos Nunez

July 26, 2023
dev@carlosnunez.me

Hello! Thank you for reading the speaker notes from my presentation, "DevOps and
Agile," given at the Agile Alliance's Agile 2023 on July 26, 2023.

I hope you find the contents therein useful.

Questions? Comments? Feedback? I take them all! Email me anytime at
dev@carlosnunez.me or find me on LinkedIn at https://linkedin.carlosnunez.me.

mailto:dev@carlosnunez.me
https://linkedin.carlosnunez.me

Agenda DevOps 101

But we have a problem…

The Three Things™

This is what we discussed during this talk.

First, we'll cover a brief crash course on DevOps, a "DevOps 101" of sorts.

We'll talk about the history of DevOps, where DevOps is today and some adaptations
of the philosophy seen within the industry.

However, we're not here to just learn about DevOps. This is an Agile conference!
Unfortunately, I think there's a problem between DevOps and Agile. We'll talk about
that afterwards.

From there, I'll discuss three Agile ceremonies that typically catch a lot of flak within
DevOps circles: the stand-up, retros and estimation. I'll discuss why they catch the
flak that they do and offer some suggestions for how to prevent your teams from
suffering the same fate.

"Hey! My app's slow.
I think it's Windows."

"Windows looks fine,
but your app might
have a memory leak."

"Okay, thanks! We'll
look into it."

A Remedy ticket
Incredibly slow

Still not resolved!

A Usual
Day

History of DevOps

Let's start with a brief history of DevOps and a recap of where it stands today.

What Does DevOps Even Mean?

DevOps means a lot of things to a lot of different people.

For some, DevOps is "the team that gets us stuff from AWS" or "the team that
updates our Jenkins pipelines".

For others, DevOps is "the dev team, but they carry pagers now."

For others still, DevOps is literally "dev plus ops; it's in the name!"

While I think these interpretations are directionally correct, they miss the nuance that
makes these realities possible. Specifically, I think teams sometimes forget about (or
feel disempowered to express) the cultural aspects of what makes DevOps DevOps.

To me, DevOps, like Agile, is a thing that you are, not a thing that you hire. Or, as
Nicole Forsgren, author of Accelerate, puts it:

“You can’t “implement” culture change.”

Atlassian, author of popular project management tools like Jira and Confluence,
formally defines DevOps as follows:

DevOps is a set of practices, tools, and a cultural philosophy
that automate and integrate the processes between software
development and IT teams. It emphasizes team
empowerment, cross-team communication and collaboration,
and technology automation.1

This definition is fine, but it's difficult for people who have never done development or
operations to grasp. I like to use my experience in a past life to paint a better picture
of what this really means.

Life of a Request

In 2008, I was a Windows systems administrator at an Australian investment bank in
New York. (This is a picture of what the author wore on his first day!) While we were
largely responsible for tending to our fleet of Windows servers worldwide, a big part of
that involved responding to requests from development teams who used these
servers to run business-critical applications.

This slide illustrates a typical interaction between a "Wintel" sysadmin (me) and a
project manager or (if we were lucky!) a software developer that we peripherally
supported.

As you can see, this interaction is pretty boring.

A developer is noticing some slowness in their applications' performance. Out of
ideas, they turn to us thinking that the operating system might be the issue.

We would do some traditional systems troubleshooting, usually find nothing wrong
with the OS, inform the developer that the system is working fine and close the ticket.

The developer thanks me for the time and continues to troubleshoot on their own.

While it seems like there isn't much going on in this conversation, a lot is lurking
beneath the surface.

Communication

At this bank, the developers spoke to us through Remedy problem tickets. An
example of the UI that developers would have used is shown above…and this was an
upgrade to what we had before!

https://www.atlassian.com/devops/what-is-devops/devops-best-practices
https://www.atlassian.com/devops/devops-tools/choose-devops-tools
https://www.atlassian.com/devops/what-is-devops/devops-culture

The Remedy tickets lacked a lot of context. Often, you wouldn't know what app the
developer was talking about, let alone the source code behind the application.

Moreover, actually filling out these tickets was painful! What could have been an easy
conversation on Lync took several minutes and tens of clicks instead. Lync had Group
Chat, but it was awful, and few used it.

Turnaround Time

Since there were many more developers than there were Windows sysadmins, tickets
queued up. A turn around time of a week was pretty common. Consequently, many
tickets were "urgent" and escalated through more senior leadership.

This added to the frustration that developers often felt when working with us.

Misunderstandings

The biggest problem hidden in this conversation is demonstrated by the resolution.

The developers thought their app was fine and that the operating system was the
problem. Who could fault the developer for thinking this? They know their app and
know how to write software, but didn't know very much about their systems.

We thought the operating system was fine and that the app was the problem. Who
could fault us sysadmins for thinking this? We know how Windows worked and racked
and stacked our servers, but knew next to nothing about writing software.2

Put another way, devs knew nothing about ops, and ops knew nothing about dev.

"Hey! My app's slow.
I think it's Windows."

"Windows looks fine,
but your app might
have a memory leak."

"Okay, thanks! We'll
look into it."

A Remedy ticket
Incredibly slow

Still not resolved!

A Usual
Day

trust

History of DevOps

All of these inefficiencies and constraints eventually lead to one thing: distrust.

Distrust from developers in the sysadmins being skilled enough to do right by them.

Distrust from sysadmins in the developer's ability to understand the platforms their
software runs on.

Distrust from the business in engineering's ability to fix things quickly when problems
arise, or ensure that the fixes they put in place are permanent.

Distrust from customers in the business's ability to meet their needs.

…maybe the idea was too crazy; developers and ops working together.
 Patrick DuBois

Talking Points

- Silos like this existed everywhere
- "But what if we worked more closely together" was thought by many, but

talked about by few
- Trading floor
- Limoncelli

- "What if Ops did Agile?"
- DevOpsDays 2009
- Conferences popped up

History of DevOps

And Now for Something Completely Different…

Many sysadmins and developers experimented with ways of tearing down these
barriers.

At the Australian bank that I worked at, I proposed having us sysadmins sit on the
trading floor with the traders and quants (devs) so that we could (a) see some really
cool Wall St action happen, and (b) better understand what our customers needed
and struggled with so we could help them work more efficiently. We tried a very
limited alpha of that. It didn't last long, as they weren't organizationally ready for that
yet.

Tom Limoncelli, SRE manager at Stack Exchange, even wrote an awesome book in
2001 that, if you glance hard enough, looks like it could have been written today! It's
called The Practice of Systems and Network Administration, and it's an awesome
read regardless of how technical you are!

However, it wasn't until 2009 when Patrick Dubois, Paul Nasrat, Rick Simmons,
Charles Loomis and others around the world started a conference to discuss one
question that's been thrown around for years prior:

"What if Ops did Agile?"

(Fun fact: Rick Simmons, an Agile Coach, presented on this topic right here at the
Agile Conference in 2009! It was called "What does Agile ops look like," and I could
absolutely NOT find a slide deck from it for the life of me.)

The initial sketch of answers to this question looked like the image on this slide. In
fact, was one of the first outputs of the first DevOpsDays conference in the world,
DevOpsDays Ghent 2009. As you can see, figuring out how to apply "people over
process" to IT operations was not easy! Here's a quote from Patrick's blog post two
weeks after that conference:

"I’ll be honest, for the past few years, when I went to some of the Agile conferences, it
felt like preaching in the dessert. I was kinda giving up, maybe the idea was too crazy:
developers and ops working together." [0]

Footnotes

[0] Dubois, Patrick. Devopsdays 2009 - Two weeks later. 2009 Nov 15.
https://www.jedi.be/blog/2009/11/15/devopsdays09-two-weeks-later/
[1] Dubois, Patrick. Charting out devops ideas.
https://www.jedi.be/blog/2009/12/22/charting-out-devops-ideas/

https://www.jedi.be/blog/2009/11/15/devopsdays09-two-weeks-later/
https://www.jedi.be/blog/2009/12/22/charting-out-devops-ideas/

I worked half my life to be
an overnight success, and
still it took me by surprise.

Jessica Savitch

Talking Points

- Conference talks intensified
- "We release 10 times a day" really got people's attention in 2009
- The explosion happened after Accelerate

- Translated "nerd" talk into numbers and money
- The explosion intensified after Phoenix Project

- Parts Unlimited
- Brent
- Sounds like someone you know?

History of DevOps

The Explosion

As it happened, this idea of "Agile Ops", or "DevOps," was slowly (and thankfully!)
proliferating throughout the world.

An eye-catching example of that at the time was Paul Hammond and John Allspaw
showing the world how they deployed changes to Flickr into production multiple times
per day at O'Reilly's Velocity conference in 2009.

However, it wasn't until Nicole Forsgren, Gene Kim, founder of Tripwire, and Jez
Humble, founder of the DevOps Research Assessment (DORA) published

"Accelerate" that DevOps crossed the chasm from experimentation to reality.

The authors of Accelerate surveyed hundreds of organizations about the efficiency of
their IT operations to answer multiple questions like "How does downtime happen"
and "What causes IT projects to fail?" By using the scientific method and empirical
analysis, Dr. Forsgren and Kim concluded this, amongst other things:

"Furthermore, over the last few years we've found that the high-performing cluster is
pulling away from the 800 pack. The DevOps mantra of continuous improvement is
both exciting and real, pushing companies to be their 400 best, and leaving behind
those who do not improve. Clearly, what was state of the art three years ago is just
not good enough for today's business environment." [0]

The magic behind Accelerate was its ability to adapt what "devops practitioners" have
been saying for ages (up to this point) into quantitative data that fits well in senior and
executive leadership circles.

…and then Brent appeared

This tour de force accelerated harder in 2014 after the release of The Phoenix Project
by Gene Kim, Eric Behr and George Spafford.

The Phoenix Project chronicles the transformational journey of Parts Unlimited from a
old-world Waterfall stalwart on the brink of death to a burgeoning auto parts
manufacturer bolstered by modern software practices and, of course, DevOps
philosophies.

(I think The Phoenix Project is a must-read. Well, the first 150 pages of it or so. It's
2021 follow-up, The Unicorn Project, ehhhh…you can skip it. :D)

Central to The Phoneix Project is Brent, a Parts Unlimited veteran and classic
old-school sysadmin. He knew where the bodies were buried…and attended several
corporate funerals of his own. More importantly, he knew all of the systems powering
Parts Unlmiited: how they worked, where they were, how to fix them, and when to
upgrade them.

While this made Brent indispensable to the company, it also made Brent a constraint.
Everything involving Parts Unlimited, from routine ops to major new releases, had to
flow through him.

As you'd expect, he never took vacations or sick days, was always available, worked
harder than almost anyone else at the company, and, consequently, was beyond
burned out.

Does this sound like someone you know? It probably does!

A major goal of the DevOps movement was to both save the Brents of the world and
prevent more of them from sprouting.

Footnotes

[0] Forsgren, Kim, Humble. Accelerate: Building and Scaling High Performing
Technology Operations. 2018. pg. 44, ISBN: 978-1942788331

LEFT:: A picture from DevOpsDays Ghent 2009
RIGHT: A picture of "Accelerate", "The DevOps Handbook", "The Phoenix Project"

Many of the teams that are ‘doing
DevOps’ well don’t even talk about
DevOps anymore—it’s simply how they
work.

Puppet Labs

2018 2022 20232020

Talking Points

- Ask the audience: How many of y'all ship to production
- Whenever you want!
- Hourly
- Daily
- Monthly
- Yearly?

- DevOps has evolved quite a lot!
- two-fold increase in people shipping daily to monthly

- At least seven million tools have come out since then
- Three ideologies

- SRE
- Observability Engineering
- Secure Software Supply Chains
- Platform Engineering

- One thing in common: DEVOPS

History of DevOps

Five years later

Several off-shoots of the DevOps ideology have emerged since The Phoenix Project
took the world by storm.

The major books that spearheaded these movements are shown above.

Site Reliability Engineering, released in 2018, describes, well Site Reliability
Engineering as practiced by Google, the inventor of the practice. SREs use software
engineering, systems knowledge, and lots and lots and lots of data to help software
engineers keep their applications up and running in production (or production-like
environments), no matter the scale. While it might not seem that way from reading the
book, developers and operations working together is central to the SRE ideology.

Observability Engineering, relaesed in 2022, generalizes the SRE concept beyond
web-based architecture and provides a framework that brings Reliability Engineering
to many companies small and large. Just like the SRE paradigm it came from,
developers and operations working together is central to Observability Engineering.

Building Secure and Reliable Systems, a COVID-19 special, introduces "Secure
Software Supply Chains", or processes for knowing the origin and authenticity of
every artifact produced by a software release pipeline and every system and piece of
software that it touches along the way. This book helped formalize the idea of
"DevSecOps," an ideology that reminds developers and operations to think
security-first.

Finally, there has been an uptick in the adoption of "Platform as Product," an idea that
merges DevOps with Lean, User-Centered Design, and other core Product
Management tenets. Put simply, "Platform as Product" challenges engineering teams
to build and treat platforms like products customers use, i.e. interview your customers,
build iteratively, and experiment. The popularity of "Platform as Product" has brought
about the "Platform Engineer," a software engineer that tends to the platform and, if
you glance hard enough, looks kinda, sorta, maybe like an SRE of yore.

Lately, I've been seeing and hearing talks of DevOps being dead. Given the lack of
talks highlighting DevOps in talk circles lately, this thought is pretty understandable.

However, instead of thinking that DevOps has died, I like to think of DevOps as
having evolved.

Nothing shows this transformation better than the 2022 Accelerate State of DevOps
report from DORA and Google Cloud. The number of companies shipping to
production every month has increased almost two-fold from 2018 (from 37% to 69%)!

devops

Does DevOps
hate Agile?!

agile?

Talking Points

- DevOps progress in breaking down silos
- But it seems like everyone hates it on the Internet?

But we have a problem?

Despite all of the progress that the DevOps ideology has made in getting engineering
teams to work together better, I've noticed a pattern in many conversations about
DevOps on Reddit, Hacker News, Twitter, and elsewhere.

As crazy as it sounds, it feels like DevOps hates Agile sometimes.

So I did a
thing…

😅
lol

yikes

Talking Points

- I made a Reddit post to learn what the community thought
- The responses were…fruity
- Here are some examples

- "...and my favorite, 'Agile experts are scam artists'"

This conflict appears everywhere!

Here are some screenshots of posts from a Reddit post I made on /r/devops that
make me think this.

It's crazy to think about a movement that was literally born and raised in Agile
conferences like this one eventually hating…itself?

I thought a second opinion was in order, so I went deeper.

I even turned to
Special Forces for
answers.

interesting

Does DevOps Hate Agile? Let's Ask The Expert.

Unsatisfied with my crowdsourced bank of responses, I decided to ask the experts:
ChatGPT.

This is what ChatGPT had to say about the relationship between DevOps and Agile.

Compared to my responses from Reddit, this is overwhelmingly positive.

That doesn't make sense! I needed to dig deeper.

The Three
Things™

- alright, we're gonna talk about the three things.
- What do y'all think the three things are going to be?

So I did a
thing…

😅

lol

Standups.
Planning.
Retros.

the slide.

Let's talk
about
standups.

The Three Things: Standups

Ask people to keep hands raised

Who here:

- Can identify with this picture?
- Has been in a standup that:

- Was scheduled for 50 minutes?
- Was scheduled for 15 minutes but was actually 50 minutes 60% of the

time everytime?
- Had to hear "let's take this offline?" at least once?
- Was ridiculously early for some and late for others?
- Had more than 15 people?
- Had more than 30 people?
- Had more than 50 people?

- Let's talk about standups
- From XP
- Standing is to make the meeting shorter
- Short meetings are meant to let devs focus on what they're good at

The Three Things
Standups

The first ceremony we'll focus on is one we all know and love: the stand up.

History

For those that haven't practiced stand-ups before, the purpose of a standup is to bring
a team together to communicate status in a short and light-weight way: what you did
yesterday, what you're doing today, and any blockers you might be facing.

As far as I know, its first known appearance was in Extreme Programming by Kent
Beck and Don Wells. They used stand-ups during their C3 payroll project at Chrysler
to minimize the number of meetings developers were involved in throughout the
day.[0]

The "standing" in a stand-up is meant to disincentivize long soliloquies about the
annals of the project they're working on. [5]

The length of a standup is meant to prevent it from becoming a traditional status
meeting that tends to encourage a very large number of inactive participants and
waste a lot of time.

Standups

無駄 (muda)
lossy
trust

JIRA?!?!
Async

Experiment

Talking Points

RIGHT 1: Standups over Slack?
RIGHT 2: Use your project tracker!
RIGHT 3: Experiment with the format

The Three Things
Standups

Solutions

Stand ups don't have to be this way. Here are some ways you can make your stand
up more engaging.

Use your bug tracker! Yes, even Jira can be useful! If everyone makes it a habit to
update Jira at the end of their day, then assuming a highly-refined storyboard, you'll
already answer the "what I did yesterday" and "what I did today" questions that
always come up during standups.

Many bug trackers make it painful to add comments. This is where automation comes
in handy. I'm a huge fan of bringing tools into working environments instead of forcing
users to use the tool.

Here's an example. Most developers spend the majority of their time in an IDE or
terminal of some sort. Pulling them away from that to open Jira is a moderate context
switch that's easy to forget.

Jira can pull Git commits from Bitbucket, GitHub, and other source control systems.
By configuring Jira to do this, developers can stay in their working environment while
providing the rest of the team with the shared context they'd typically wait until stand
up to get.

Try having standups on Slack/Teams. Another tactic that helps prevent stand ups
from becoming status meetings is by simply moving them online! Try replacing the
15-minute daily standup with a daily standup thread that team members can
contribute to at whatever time works best for them.

Combining this with better bug tracker hygiene makes it possible to get every member
on a team caught up without needing any meetings at all!

Some might lament the loss of face-to-face time by doing this, especially in today's
world that is increasingly remote. I think that this "loss" can be reframed as a "gain" in
higher-quality face-to-face meetings. For example, the time spent during standups
can be reallocated into a really good end-of-week retro or an optional, once-weekly
stand down to keep a pulse on team health.

Lastly, you can try changing the format of your standups. Many standups are
centered around the yesterday/today/blocker format. As we saw earlier, this yields
highly-embellished information at best or, at worst, nothing. There are many other
ways of running a standup that might produce higher-quality shared context.

https://funstandups.com/ has lots of really great formats to try.

Remember: status meeting stand ups will always happen when trust fades away.
Trust your team, and high quality stand ups that will help your team ship software
faster will naturally follow.

Example: A colleague of mine ran standups for an extremely large greenfield initiative
at a national media company. His standups typically had 50+ people in them. They
almost always finished in two minutes and were frequently well-attended. Good
standups are not impossible.

Footnotes

[0] http://www.extremeprogramming.org/rules/standupmeeting.html

https://funstandups.com/
http://www.extremeprogramming.org/rules/standupmeeting.html

[1] https://contextkeeper.io/blog/the-real-cost-of-an-interruption-and-context-switching/
[2] Paul Graham, a software developer turned famed venture capitalist, calls this
dynamic the "maker's schedule vs manager's schedule". Learn more here:
http://www.paulgraham.com/makersschedule.html
[3] This is sometimes called the "bus factor".
https://www.5whys.com/articles/team-bus-factors-how-to-reduce-them-and-how-to-pre
vent-them.html
[4] Here's a real-life story of a "Brent" in the wild. Toxic employees can cause serious
damage to businesses; sharing context can help avoid this.
https://www.freecodecamp.org/news/we-fired-our-top-talent-best-decision-we-ever-ma
de-4c0a99728fde
[5] I've seen lots of variations to standing up, though. Wall sits are popular, for
example. There's one picture of a team planking during a stand up. Don't try these at
home!

https://contextkeeper.io/blog/the-real-cost-of-an-interruption-and-context-switching/
http://www.paulgraham.com/makersschedule.html
https://www.5whys.com/articles/team-bus-factors-how-to-reduce-them-and-how-to-prevent-them.html
https://www.5whys.com/articles/team-bus-factors-how-to-reduce-them-and-how-to-prevent-them.html
https://www.freecodecamp.org/news/we-fired-our-top-talent-best-decision-we-ever-made-4c0a99728fde
https://www.freecodecamp.org/news/we-fired-our-top-talent-best-decision-we-ever-made-4c0a99728fde

"Sprint
Planning"

The Three Dislikes
Estimation

Next, let's talk about estimation, my next biggest dislike.

You knew this was coming. I hope you weren't surprised.

HIstory

The history of estimating things probably predates history itself. Instead of
summarizing the Wikipedia entry for "estimation," I'll give you a quote from Ron
Jeffries, a founder of Extreme Programming and widely regarded as the "father of the
story point" [0]:

"In XP, stories were originally estimated in time: the time it would take to implement
the story. We quickly went to what we called “Ideal Days”, which was informally
described as how long it would take a pair to do it if the bastards would just leave you
alone. We multiplied Ideal Days by a “load factor” to convert to actual implementation
time. Load factor tended to be about three: three real days to get an Ideal Day’s work
done.

We spoke of our estimates in days, usually leaving “ideal” out. The result was that our
stakeholders were often confused by how it could keep taking three days to get a

day’s work done, or, looking at the other side of the coin, why we couldn’t do 50
“days” of work in three weeks.

So, as I recall it, we started calling our “ideal days” just “points”. So a story would be
estimated at three points, which meant it would take about nine days to complete.
And we really only used the points to decide how much work to take into an iteration
anyway, so if we said it was about 20 points, no one really objected."

[0] The rest of this post is a really good read.
https://ronjeffries.com/articles/019-01ff/story-points/Index.html

DevOps and Agile: The Three Things

TOP MIDDLE: Rituals

LEFT 1: They're long
LEFT 2: They turn into status meetings
LEFT 3: Words don't mean what they used to mean

- Retros turn into end-of-week status meetings instead of a relaxing end to the
week

- Acceptance Criteria become a checklist instead of an agreed upon definition
of done

- User Stories become ticket descriptions instead of stories

https://ronjeffries.com/articles/019-01ff/story-points/Index.html

The Three Dislikes
A Thought Experiment

My dislike for estimation can be explained with a quick thought experiment.

Exercise

You get a call from your friend one day. "Hey, dude. We just moved into town, and
need some help moving in. Can you stop by if you're not busy?"

You excitedly agree to help them out the next day…only to walk into this.

How long would it take you to put this together?

Think this through. There's no wrong answer!

Solution

There is a nearly infinite set of possibilities for attacking this problem.

Perhaps you asked yourself a few follow-up questions, like:

- "What is this?"
- "What tools do I have?"

- "Where is it going, and how much space do I have to work with there?"
- "Will this friend be helping?"
- "Do we need every part that's here?"
- "Why didn't you tell me this thing came with, like, 10 million parts?!"

All of which are totally valid…your friend simply asked you to help them build a grill!
Without telling you!

You might have built a grill just before reading this and have a very accurate idea of
how long it will take to assemble it.

Maybe you've never seen a grill before, and because you're not very handy, you're
imagining this taking a day or so to get done.

Planning

"refinement"
too f'n big

The Three Dislikes
Planning

Back to Reality

This is similar to patterns I've seen in so. many. planning. sessions.

Problems

Refining During Planning

I've been to many planning meetings where "planning poker" Is less "agreeing to a
story point that won't blow out the sprint and make someone with a spreadsheet real
mad" and more "oh, this user story has a single sentence in it…"

Refining stories during planning is literally the worst.

First, the person that threw the story into the backlog usually isn't in the planning
meeting! This not only risks adding more muda into the backlog that will stale over
time, but the team is now at-risk for potentially not working in a story that might be
considered business-critical!

While this might seem like a common sense suggestion, I've been to an extremely
surprisingly high number of planning sessions where this happens.

Planning

"refinement"
too f'n big
man hours

smaller!
async

person hours?

The Three Dislikes
Solutions

Here are some tactics that I've seen work at high-performing teams!

Yes, your stories can be smaller!

Engineers and/or interested stakeholders Hoovering entire planning meetings over a
very small subset of stories happens all of the time.

In almost every instance I've seen this happen, a big driver of the conflict was the
story simply being too large or ambiguous!

We as Agilists know that the user story is meant to be the smallest unit of work a team
member can accomplish. That is unlikely to happen if a story has ten acceptance
criteria, for example!

I recommend spending a lot of effort making stories as small as possible. Knowing
when stories can be made smaller while still being playable is a difficult task, but there
are usually a few warning signs you can look for, like:

- Does the user story have multiple stories in it? (This might sound obvious, but
I've seen so many stories like this!)

- Do multiple engineers not understand the story? Why?

- Are multiple engineers throwing a five (or higher) against that story during
planning? Why?

- Is the list of acceptance criteria ten miles long, even after de-duplicating them?

Continuous refinement

What if I told you that your backlog refinement sessions could be less than 15
minutes?

I've seen it happen!

In my experience, the trick to getting there is with continuous refinement. "Continuous
refinement" is the practice of refining stories as they enter the backlog, i.e. validating
their user story bodies and acceptance criteria and, if possible, prioritizing them as
they come in.

Trying to continuously refine stories manually would work for a good five minutes
before losing your sanity. Thus, trying continuous refinement forces teams to (a) be
very rigid about the stories they accept, and/or (b) automate as much of the
refinement process as possible.

Many project trackers either have facilities for ticket automation (like automatically
assigning labels or closing stories that don't pass validation rules) or have APIs that
you can take advantage of to build it yourself.

To be clear, I am not recommending canceling your planning and weekly refinement
meetings. I think there is a lot of value in gathering together to make sure that the
backlog looks right and that the team has a theme they are working towards. All I'm
saying is that automating the muda away before it even makes it into your story board
makes the meetings an impactful formality rather than a useless necessity.

Maybe use person hours after all?

If story points/T-shirt sizes/automobile types/whatever are working well for your team,
by all means, continue using them!

Unfortunately, in almost every team I've worked with, adopting story points or other
non-time-based estimation units have caused more problems than they solve.

The stress of constant negotiation and re-negotiation to chase inaccurate velocities
that were silently converted into time anyway appeals to absolutely no one (unless
you like the drama of stress, of course).

Why should we continue stressing ourselves out for unrealistic goals? If story points
are destined to be inaccurate and poorly correlate to the tasks at hand, then what's

the harm in going back to estimating in man person hours?

Hear me out here.

You're on a team that's working towards a critical release date a month from now. The
release date was set by executives to try and beat out the competition, whose
releasing their thing a few days later.

The team knows (or feels) that their backlog is at least three months deep.

Does expressing everything as story points change this?

Sure, if your team was given enough executive sponsorship to be truthful about their
estimates. But that's an unlikely reality.

If we know that this is unlikely to happen, then would it not be easier and more useful
for team members to think in terms of how long it actually takes them to finish work?

Sure, your backlog will be represented as being three months deep instead of 72
story points deep. Sure, senior management will put a lot of pressure on you to
magically turn that three into a one. But you were going to have those conversations
anyway because estimations are just that, estimates. So if all estimates are just
best-guesses, why not just discuss estimates in hours?

Retros.

The Three Things
Retros

Let's wrap up this presentation with my favorite most-abused ceremony that DevOps
practitioners typically grow to hate: the retrospective.

History

The Agile Alliance (yes, that Agile Alliance) defines retrospectives as:

definition

If you're thinking "Well, that sounds like something I've been doing with teams for my
entire career," you're not wrong! The idea of a team gathering together to do a self
health check has been a thing for a very long time.

Unfortunately, those self health checks are typically sporadic and long overdue. In my
experience, before retrospectives were a "thing", they were chatter during the
end-of-year holiday party or around the proverbial watercooler. While these feedback
sessions are extremely healthy for keeping team morale high, because of their
sporadic nature by which they happen, teams often did not use them to build
themselves better.

What the concept of a retrospective aims to do differently is best described by Alistair

Cockburn, a computer scientist often proclaimed as the "father of the retrospective."
From Surviving Object-Oriented Projects: A Manager's Guide:

Lesson 4: Get training; keep learning. Not only did Project Ingrid get initial training, they established
internal study meetings. Continuous learning is a key factor in building a successful development
organi-zation. Even the masters of object technology continually meet to trade ideas and learn. One
week, even four weeks, of training does not constitute "enough learning."

The retrospective aims to move these disconnected and infrequent "venting sessions"
into a formal, weekly practice (or after every iteration). Their goal is to give the team a
safe space to discuss how they felt about the iteration, the team, and the environment
they're working in. Output from the retro is meant to be captured as action items that
the team can, optionally, track alongside the rest of their work (or by some other
means).

scenery
continuous

Vegas

Retros

inaction items
safe space

The Three Things
Retros

Fortunately, I've seen just as many bad retros as good ones. You'll learn (or are
probably learning about) all sorts of ways of having good retros, so I'll only talk about
some traits of successful retros that I've seen in DevOps circles.

Change the scenery!

You'll learn (or have learned) that retros should be the meeting that your team looks
forward to every week. It's difficult to make that happen when the team has a drab
meeting room to look forward to.

Many teams have enjoyed significantly better retros simply by changing the scenery a
bit.

I'm a huge fan of having retros during lunch hour with nothing but the team and a
notepad. Food brings people together!

Make it continuous

You might not be able to convince the powers that be to expense a weekly lunch for
the team to hold their retro. If that's not possible, then another tactic that teams
respond well to is holding fewer, but higher-quality retros instead.

Here's one way this could work. The team has a shared "wall" of post-its: physical or
virtual. Whenever someone on the team has a grievance that they want to talk to the
team about, they create a "sticky" and paste it to the board. Sometime after the
middle of the iteration, the scrum master or team lead looks at the board and, if any
post-its are on the board, they ask the team if they want to hold a retro at iteration end
or sooner.

The team won't always agree to have a retro --- some iterations are pretty uneventful!
However, when they do, the chances of it being an impactful, high-quality retro with
real action items to address is very high.

This also helps prevent retros that center around one or two big grievances, which
can shut important voices out. [0]

What happens at retro, stays at retro [1]

The retro should be a completely safe space. The team members should feel
empowered to say anything that helps drive the team forward.

I've been to some retrospectives where people even addressed personnel conflicts
within the meeting! (This is obviously very risky and requires a high degree of mutual
trust; proceed with caution!)

This cannot happen when the team feels like their job is done for if they say the wrong
thing. This is more likely to happen when the audience within the retro grows beyond
the team, and it definitely happens when management shows up.

I highly recommend that team retros have no management or outsider presence. In
other words, retros should be "Vegas" style: whatever happens within the retro, stays
within the retro.*

You might need to hold two separate retros for this to be successful: one for the team,
and another for management. This way, you can safely gather as much useful
feedback about both how the team is doing and how the team thinks their
management is doing as possible.

Footnotes

[0] I often see retro facilitators (who should not always be the scrum master!) try to
timebox retro talking points on a board.

I'm generally not a fan of this for two reasons.

First, some of the more serious talking points often go way beyond the timebox

anyway, and I think there's value in centering the retro around one issue, if that's what
the team wants to do.

Second, the timebox being required is often a sign of a team that has a LOT to talk
about, which is a symptom of a team that doesn't talk to each other often.

If this happens frequently, it might be worthwhile to understand why the team has so
many issues and how they can be brought to bear sooner!

[1] Unless it's something that the team wants to make an action item. Also, the retro
facilitator can, and should, be an outsider without bias!

agile!

devops

Summary

SUMMARY

Thanks for reading!

In this presentation, we delved into the relationship between DevOps and Agile.

We started with a brief primer of DevOps: how it started, why it started, and where it's
going.

We then used some spicy screenshots from the Internet to posit a controversial
question: does DevOps hate Agile?

From there, we discussed three popular ceremonies that drive this viewpoint, how
they do so, and what Agilistas can do to buck the trend: standups, planning, and
retros.

Then

Now
Final Word

I always like to throw in the original Agile Manifesto into these kinds of talks
somewhere.

I do so to remind teams that while there are so many "official" ways of doing
capital-A-Agile (Scrum™, SaFE™, Leading Agile, DaD, etc), this is what agile
ultimately is.

Agile, like DevOps, is about working together more closely and more often to achieve
a common goal. That's it!

You don't have to do standups.

You don't have to do planning.

You don't even have to do retros!

While these ceremonies are helpful for getting teams talking to each other and
working together, don't forget that talking to each other and working together is the
end goal, not the ceremonies themselves!

This was the goal in 2001, and it's still the goal today!

Thanks! dev@carlosnunez.me

Thanks for reading this presentation!

I'd love to hear your feedback. What did you like? What did I miss?

Email me anytime at dev@carlosnunez.me or find me on LinkedIn at
https://linkedin.carlosnunez.me.

Take care!

mailto:dev@carlosnunez.me
https://linkedin.carlosnunez.me

