
@Agile2022 :: @DocOnDev

Useful
Metr ics

for
Agile
Teams

Useful

@Agile2022 :: @DocOnDev

Which
Metr ics?

Come up with a list of two or three metrics at each table.

Metrics you use frequently or metrics you want to know more about.

Doc - Record metrics from each table in Mural

@Agile2022 :: @DocOnDev

@Agile2022 :: @DocOnDev

Velocity &
Throughput

Velocity & Throughput are essentially synonymous.

Velocity is Scrum vernacular that has leaked into the industry - Sprint is another example of this

Throughput - the rate at which a team delivers

@Agile2022 :: @DocOnDev

Throughput 
I t e m s p ro c e s s e d p e r
i t e r a t i o n

Throughput can be expressed as a single measure or as an average

If you process three items in a given iteration, your throughput is 3 for that iteration

If you process an average of 4.2 items per iteration, your average throughput is 4.2

@Agile2022 :: @DocOnDev

WIP & 
Flow Load

WIP or Work in Progress is the same as Flow Load in SAFe

@Agile2022 :: @DocOnDev

WIP 
(Wo r k I n Pro g re s s)
N u m b e r o f i t e m s i n
p ro g re s s a t a g i v e n t i m e

Work In Progress is the measure of the number of items in progress at a given time

This can be the number of items in a specific state, such as in development

This can also be the number of items in all states

For example <NEXT>

@Agile2022 :: @DocOnDev

Wo r k I n P ro g re s s (W I P)
a.k.a. Flow Load

This team has

5 items in WIP for In progress

2 items in WIP for Testing

2 items in WIP for Ready for Approval

That is a total of 9 items in WIP for the team

@Agile2022 :: @DocOnDev

Code 
Complex i ty

@Agile2022 :: @DocOnDev

Code
Complex i ty  
M e a s u re o f t h e l o g i c a l
b r a n c h e s i n t h e c o d e

This can be done with static analysis tools against the code

@Agile2022 :: @DocOnDev

Code 
Complex i ty

You can use Cyclomatic or ABC Complexity.

Cyclomatic Complexity, also known as McCabe’s number is based on nodes and edges in the code tree. It is essentially a count of linearly independent paths in the
code. It was designed as a means of determining the number of tests you need for a piece of code.

ABC is similar to Cyclomatic Complexity, but is based on Assignments, Branches, and Conditionals, so it is a bit more robust. It was originally intended to be used as a
means of forecasting.

Today, both of these measures are used as a proxy for code quality.

@Agile2022 :: @DocOnDev

Code Complex i ty
1 2 22 3

A strictly linear program has a cyclomatic complexity of 1 <next>

Whereas a Do Until, While, and For all have <next> a complexity of 2

A case statement <next> grows in complexity by one for every option<next>

@Agile2022 :: @DocOnDev

Code Complex i ty
1 2 22 4

And if those case statements each exit the program, <next>

@Agile2022 :: @DocOnDev

Code Complex i ty
7

the complexity increases by 2 for every new option

Why do we care about this?

Because <next>

@Agile2022 :: @DocOnDev

There i s a
pos it ive

correlat ion
between

Code
Complex i ty

and defects .

The higher the complexity, the more likely a method is doing too much or has low cohesion.

The more responsibility a method has or the lower the cohesion, the higher the likelihood there are defects lurking therein.

Many conditionals can be collapsed with some refactoring - You can take look at basic inheritance and the factory pattern for more on this.

@Agile2022 :: @DocOnDev

Escaped Defect
Count

Ways they forecast now.

Ways they know that you’re going to make it to the deadline given some quantity of work and a target date.

@Agile2022 :: @DocOnDev

Escaped Defect
Count 
N u m b e r o f d e f e c t s
i n t ro d u c e d (o r e x i s t i n g)
i n p ro d u c t i o n

This is a trailing indicator of issues.

@Agile2022 :: @DocOnDev

Escaped
Defects

Count of defects found in production.

If at all possible log the defect against the release during which it was introduced. For some defects, this will be easy, but others might not rear their heads for weeks or
even months.

If it is in Development or UAT, it is not an escaped defect.

@Agile2022 :: @DocOnDev

Total Escaped Defects

April May June July

This is helpful. We can see a trend here and forecast into the future. This can inform our remediation efforts.

@Agile2022 :: @DocOnDev

Escaped Defects Per Spr int

April May June July

We can also look at defects released per sprint.

Both total and defects per iteration are helpful, but they both can lead us to invalid conclusions.

Total might be getter better because we’re cleaning them up, while the number of defects introduced us actually going up each iteration.

Count per iteration may be dropping, but our throughput might be dropping faster, meaning we’re actually not doing as well.

If, however, we look at defects as a percentage of throughput, we get a view into defect density and we can actually compare iteration to iteration a bit better for trending.

@Agile2022 :: @DocOnDev

Throughput

0

22.5

45

67.5

90

April May June July

@Agile2022 :: @DocOnDev

Throughput (Velocity)

0

22.5

45

67.5

90

April May June July

@Agile2022 :: @DocOnDev

Defects : Spr int & Throughput

April May June July April May June July

@Agile2022 :: @DocOnDev

Escaped Defects by Throughput

0
0.75

1.5
2.25

3

April May June July
0

22.5
45

67.5
90

April May June July

0%

1.75%

3.5%

5.25%

7%

April May June July

If, however, we look at defects as a percentage of throughput, we get a view into defect density and we can actually compare iteration to iteration a bit better for trending.

@Agile2022 :: @DocOnDev

Code 
Compl iance

@Agile2022 :: @DocOnDev

Code
Compl iance 
A d h e re n c e t o c o d i n g
s t a n d a rd s

This is a way of using static analysis to ensure code meets certain standards

- Indentation / Formatting

- Method length

- Parameter Count

- Code Duplication

@Agile2022 :: @DocOnDev

Lead Time &  
Flow Time

Lead Time and Flow Time are the same concept

@Agile2022 :: @DocOnDev

Lead Time  
Th e t o t a l t i m e f ro m
c o n c e p t t o d e l i v e r y

Lead time is often considered the time from when a story enters the backlog to when it is in production.

Lead time includes all stages and wait states.

Lead Time helps organizations understand how quickly they can deliver software. It gives you a sense of the efficiency of the teams. Shorter lead times enable faster
feedback on what is getting built and allows for quicker course correction. Conversely, longer lead times signify bottlenecks in the process.

When you have long lead times, you need to look at the cycle time and wait states to figure out where to focus.

@Agile2022 :: @DocOnDev

Cycle Time

@Agile2022 :: @DocOnDev

Cycle Time  
Th e t o t a l t i m e s p e n t i n a
p a r t i c u l a r s t a g e

Cycle Time is often considered the total time a story spends in a stage.

For example - an environment where discovery, design, development, testing, and deployment are the stages. Lead Time would be how long an item takes to get
through all of the stages. And the time spent in development would be the development cycle time.

Cycle time helps us understand how long any given item might spend in a given stage. Stages with longer or highly variable lead times indicate bottlenecks. Optimizing
any stage other than the bottleneck will have minimal impact on overall delivery. Focus on the bottleneck. Optimizing in front of the bottleneck will overload the
bottleneck, slowing it down more. Optimizing after the bottleneck will provide no improvement overall.

@Agile2022 :: @DocOnDev

Planned versus
Actual &  
Flow
Pred ictab i l i ty

@Agile2022 :: @DocOnDev

Planned
versus actual  
A c o m p a r i s o n o f w h a t w e
t h o u g h t i t w o u l d t a ke t o
w h a t i t a c t u a l l y t o o k

Organizations need to be careful when they do this.

The purpose of this metric is to inform your planning, It is NOT to figure out what the team did wrong.

Plans are a guess

Actuals are reality

The intent is not to bend reality, but to make better guesses.

@Agile2022 :: @DocOnDev

Burn Up &  
Burn Down

@Agile2022 :: @DocOnDev

Burn Up &
Burn Down 
A v i s u a l m e a n s o f
t r a c k i n g p ro g re s s t o w a rd
a g o a l

Burn up and burn down are both simple ways of tracking progress toward a goal. We might use a burn chart within an iteration to see how we are tracking toward
completion of the anticipated work. We might use a burn chart to see how we are progressing toward completion of a feature or release.

@Agile2022 :: @DocOnDev

0

25

50

75

100

Start 1 2 3 4 5 6 7 8 9 10

Ideal
Actual

Burn Down

The intent is to inform us early so that we can make adjustments to the plan. The intent is NOT to inform us so that we can put pressure on the system to extract more
work or force compliance to a commitment.

@Agile2022 :: @DocOnDev

0

25

50

75

100

Start 1 2 3 4 5 6 7 8 9 10

Ideal
Iteration 1
Iteration 2
Iteration 3

Burn Down

Looking at burn charts over time can expose patterns and give us insight into issues in the system.

@Agile2022 :: @DocOnDev

Deployment 
Frequency

@Agile2022 :: @DocOnDev

Deployment
Frequency

H o w o f t e n y o u d e p l o y
c o d e t o p ro d u c t i o n a n d
re l e a s e t o e n d u s e r s

One of the DORA (DevOps Research & Assessment) Metrics

Expressed as count per time period

Once per six months - low performing

Between once per month and once per six months - medium performing

Between once per week and once per month - high performing

Multiple times per day - elite

@Agile2022 :: @DocOnDev

Lead Time For
Change

@Agile2022 :: @DocOnDev

Lead Time For
Change

H o w l o n g i t t a ke s t o g o
f ro m c o d e c o m m i t t e d t o
c o d e s u c c e s s f u l l y r u n n i n g
i n p ro d u c t i o n

One of the DORA (DevOps Research & Assessment) Metrics

More than six months - low performing

Between one and six months - medium performing

Between one day and one week - high performing

Less than one hour - elite

@Agile2022 :: @DocOnDev

Mean Time  
To Restore

@Agile2022 :: @DocOnDev

Mean Time To
Restore  
Th e a v e r a g e t i m e i t t a ke s
t o re c o v e r f ro m a d e f e c t
o r o u t a g e

One of the DORA (DevOps Research & Assessment) Metrics

Many places see defects and outages as separate from one another. But in a high-functioning environment, defects are considered outages - The service is sub-standard
and needs to be brought back to standard.

This is an indicator of overall solution quality as well as the effectiveness and efficiency of the team.

@Agile2022 :: @DocOnDev

Change Fa i lure
Percentage

@Agile2022 :: @DocOnDev

Change
Fa i lure
Percentage

Th e p e rc e n t a g e o f
d e p l o y m e n t s c a u s i n g a
f a i l u re i n p ro d u c t i o n

One of the DORA (DevOps Research & Assessment) Metrics

The measure of the number of times “a hotfix, a rollback, a fix-forward, or a patch” is required after a software deployment or a service change.

Keep in mind - this number can be misleading in a lower-performing environment. Some places are so accustomed to defects in production, that they actually have
CLASSES of defects and will NOT issue a hot-fix for many of their defects. These environments may not count anything but a critical defect in their change failure
percentage, giving them a false sense of quality.

@Agile2022 :: @DocOnDev

Net promoter
Score

@Agile2022 :: @DocOnDev

Net Promoter
Score

H o w l i ke l y a re y o u r u s e r s
t o re c o m m e n d y o u r
p ro d u c t / s o l u t i o n ?

NPS is a measure of customer satisfaction and considered a leading indicator of growth.

On a scale of 1-10, How likely is it that you would recommend [brand] to a friend or colleague?

Customers who answer

9 or higher are “promoters”

7 or 8 are “neutrals”

6 or lower are “detractors”

NPS is calculated by taking the percentage of promoters and subtracting the percentage of detractors.

A score can range from -100 to 100, with a higher score being more positive. Scores below 0 mean more people are detractors than promoters.

Typical scores fall between -1 and +50

Netflix 64

PayPal 63

Amazon 54

Google 53

Apple 49

@Agile2022 :: @DocOnDev

Flow Eff ic i ency

@Agile2022 :: @DocOnDev

Flow
Eff ic i ency

R a t i o o f a c t i v e w o r k i n g
t i m e t o Le a d T i m e

Flow Efficiency is a way of highlighting the delays in a process.

Map out your wait states as well as active states.

Flow efficiency is the time spent in active states divided by the lead time.

@Agile2022 :: @DocOnDev

20 20 15 25

15 10 20

Active

Wait

Lead 125

Flow Eff ic i ency

Flow Efficiency is a way of highlighting the delays in a process.

Map out your wait states as well as active states.

Flow efficiency is the time spent in active states divided by the lead time.

@Agile2022 :: @DocOnDev

20 20 15 25

15 10 20

Active

Wait

Lead 125

Flow Eff ic i ency
80 / 125 = 64%

In this case, the flow efficiency is 64%

This is pretty good. In a lot of systems, flow efficiency can be as low as single digits. Often, focusing on making the work go faster can have less impact than reducing
the wait states.

@Agile2022 :: @DocOnDev

Team Joy

@Agile2022 :: @DocOnDev

Team Joy

Th e o v e r a l l “ m o o d ” o f a
t e a m

Team Joy is something we are still researching in the industry.

The idea here is to take regular samples of how a team is feeling about the work and the work environment. These should be on a short time scale, say weekly or even
daily.

Use lightweight measurement techniques.

Niko Niko Calendars

@Agile2022 :: @DocOnDev

Team Joy

Have people rate their mood each day. This can be done anonymously, if the team needs that extra level of safety.

@Agile2022 :: @DocOnDev

Team Joy

https://code-joy.app/

This is a simple open source tool (still under development) that measures developer joy at every code check-in.

We ran an experiment like this at Groupon several years back and we found that “Code Joy” was a leading indicator of other issues. When code joy was trending down,
we usually saw drops in throughput or increases in defects and rework about a week later.

By paying attention to the code joy metric, teams were able to discuss issues early.

@Agile2022 :: @DocOnDev

Defect Aging

@Agile2022 :: @DocOnDev

Defect Aging

A v e r a g e a g e o f d e f e c t s

In a high functioning environment, this is similar to Mean Time To Recovery

Some organizations might want to look at this by severity of defect. That is usually an indicator that you have serious quality issues.

@Agile2022 :: @DocOnDev

0

7.5

15

22.5

30

1 2 3 4 5 6 7

Defect Aging

@Agile2022 :: @DocOnDev

0

7.5

15

22.5

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Defect Aging

@Agile2022 :: @DocOnDev

Code Coverage

@Agile2022 :: @DocOnDev

Code
Coverage

Pe rc e n t o f c o d e c o v e re d
b y a u t o m a t e d t e s t s

Code coverage is an indirect indicator of quality.

Code coverage tools can help a team identify areas of the code that are not exercised by tests. In a Test first environment, this is extremely uncommon.

In some environments, you will see test coverage by type of test - so you’ll have a report for unit tests and a separate report for acceptance tests. In other environments,
you’ll see one coverage report for the entire test suite, regardless of type of test.

@Agile2022 :: @DocOnDev

Work I tem 
Aging

@Agile2022 :: @DocOnDev

Work I tem
Aging

Th e a g e o f a n i t e m i n
p ro g re s s

Work Item Aging is measured while an item is in progress. This is the elapsed time from the moment a work item was started until now. It includes active working time
AND any idle time regardless of the cause.

Work item age can highlight stories that need focus.

@Agile2022 :: @DocOnDev

Cumulat ive  
Flow Diagram

@Agile2022 :: @DocOnDev
3 4 5 6 7 8 9 10

Cumulat ive
Flow

Diagram

@Agile2022 :: @DocOnDev

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Deployed
Ready for Approval
In Testing
In Progress
Ready To Start

D
one

N
ot D

one W
IP

Lead Time

Cycle

Scope

Cumulat ive Flow Diagram

Looking at this diagram, we can see <next>

work done and work not done <next>

The amount of Work in Progress at any given time <next>

The lead time - hey wouldn’t it be nice to hay, isn’t that nice <next>

And the cycle time - the amount of time an item is actually being worked on <next>

Finally, we can see changes in scope whenever our top line moves.

For a team that is operating well, this graph has relatively smooth lines that move together up and to the right

@Agile2022 :: @DocOnDev

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

Remember this chart from earlier?

We couldn’t say for sure what was the issue for this team.

@Agile2022 :: @DocOnDev

Same Team 
Same Data 

D i f f e r e n t  
Pe r s p e ct i v e

@Agile2022 :: @DocOnDev

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

Deployed
Ready for Approval
In Testing
In Progress
Ready To Start

Can anyone tell me what is “wrong” with this team?

Product owner is a traveling salesperson. On the road, doesn’t have time. Comes back and approves and then adds to the backlog.

@Agile2022 :: @DocOnDev

Personnel
Turnover

@Agile2022 :: @DocOnDev

Personnel

Turnover 
A m e a s u re o f p e o p l e
l e a v i n g a t e a m

Employee turnover is a ratio of the number of people who left a team in a given time period to the average size of the team during that same time period.

The average turnover for Technical Staff is around 20% annually, industry wide.

Depending on your environment, high turnover may be an indicator of issues - you’ll want to look into why folks are leaving. In other environments, perhaps where there
is a more fluid staffing plan, team turnover is less of an indicator of issues.

You night also want to look at turnover in terms of leaving the department or organization rather than at the team level.

@Agile2022 :: @DocOnDev

Personnel Turnover

People Leaving: 1

Average Team Size: (5+4)/2 = 4.5

Personnel Turnover: (1/4.5) = .22

22%

Lets say in a given quarter that 1 person leaves a team of 5 and is not replaced, the turnover rate is 22% for that quarter.

@Agile2022 :: @DocOnDev

Personnel Turnover

People Leaving: 1

Average Team Size: (5+5)/2 = 5

Personnel Turnover: (1/5) = .20

20%

Lets say in a given quarter that 1 person leaves a team of 5 and is replaced in the same quarter, the turnover rate is 20% for that quarter.

@Agile2022 :: @DocOnDev

Batch S ize

@Agile2022 :: @DocOnDev

Batch S ize  
Th e q u a n t i t y o f w o r k t h a t
q u e u e s f o r t h e n e x t s t a g e

I do not LOVE this definition, and I am open to a different one.

The thing is, in manufacturing, batch sizes are pretty easy to see because they are about counts of items. In software, what constitutes a batch is a little less concrete.

@Agile2022 :: @DocOnDev

Batch
S ize

Batches exist everywhere -

Each story is a batch of work

When stories are dependent on each other, they make up a batch

What gets tested together is a batch

Collections of stories like features or epics are a batch

Releases are a batch

@Agile2022 :: @DocOnDev

The b igger
the Batch

S ize , the
greater the

r i sk .

The bigger the batch, the greater the risk. The greater the risk, the more planning required. The more planning required, the more time it takes. The more time it takes, the
bigger the batch.

This is a vicious cycle

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

Challenges?

Select a couple of challenges from this list - what resonates with you in your environment?

Form Groups

Doc ask for a volunteer to list their top challenge - Anyone else who wants to work on that challenge join them

@Agile2022 :: @DocOnDev

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

Challenge

@Agile2022 :: @DocOnDev

Challenge

Result

@Agile2022 :: @DocOnDev

Challenge

Result

CauseCause

@Agile2022 :: @DocOnDev

Challenge

Result

CauseCause

Cause Cause

@Agile2022 :: @DocOnDev

Challenge

Result

CauseCause

CauseCause CauseCause

@Agile2022 :: @DocOnDev

Challenge

Result

CauseCause

CauseCause CauseCause Cause

Cause

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

Frequency

Im
pa

ct

@Agile2022 :: @DocOnDev

Challenge

Result

CauseCause

CauseCause CauseCause Cause

Cause

@Agile2022 :: @DocOnDev

Cause BCause A Cause BCause D

Cause C

@Agile2022 :: @DocOnDev

Frequency

Im
pa

ct Cause BCause A

Cause D

Cause C

#CodeStock :: @DocOnDev

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

Hawthorne Effect

The Hawthorne effect (also referred to as the observer-expectancy bias) is a type of reactivity in which individuals modify an aspect of their behavior in response to their
awareness of being observed. This can undermine the integrity of research, particularly the relationships between variables.

The original research at the Hawthorne Works for telephone equipment in Cicero, Illinois, on lighting changes and work structure changes such as working hours and
break times was originally interpreted by Elton Mayo and others to mean that paying attention to overall worker needs would improve productivity.

Later interpretations such as that done by Landsberger suggested that the novelty of being research subjects and the increased attention from such could lead to
temporary increases in workers' productivity. This interpretation was dubbed "the Hawthorne effect". It is also similar to a phenomenon that is referred to as novelty/
disruption effect.[6]

@Agile2022 :: @DocOnDev

Hawthorne

Effect

The Hawthorne effect (also referred to as the observer-expectancy bias and closely related to novelty bias) is a type of reactivity in which individuals modify an aspect of
their behavior in response to their awareness of being observed. This can undermine the integrity of research, particularly the relationships between variables.

The original research at the Hawthorne Works for telephone equipment in Cicero, Illinois, on lighting changes and work structure changes such as working hours and
break times - the increased attention from being measured/monitored lead to temporary increases in workers' productivity.

@Agile2022 :: @DocOnDev

Hawthorne

Effect

That which is known to

be measured

will improve

The Hawthorne effect (also referred to as the observer-expectancy bias and closely related to novelty bias) is a type of reactivity in which individuals modify an aspect of
their behavior in response to their awareness of being observed. This can undermine the integrity of research, particularly the relationships between variables.

The original research at the Hawthorne Works for telephone equipment in Cicero, Illinois, on lighting changes and work structure changes such as working hours and
break times - the increased attention from being measured/monitored lead to temporary increases in workers' productivity.

@Agile2022 :: @DocOnDev

Balance
your

metr ics

0

12.5

25

37.5

50

0

4

8

12

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If you are going to measure Throughput, consider also measuring Code Quality as a potential countervailing measure

@Agile2022 :: @DocOnDev

Goodhart ’ s Law

@Agile2022 :: @DocOnDev

Goodhart ’ s

Law

Photo By Jamesfranklingresham - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=22189516

An adage in economics known as Goodhart’s Law:

Charles Goodhart was an economic advisor to the UK Government under Margaret Thatcher. Thatcher’s approach to monetary policy included setting targets for specific
financial indicators.

Any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes.

In other words - when you set a target for a metric, the odds are the metric no longer means what it once did and therefore your target doesn’t mean what you think it
does.

@Agile2022 :: @DocOnDev

Goodhart ’ s

Law

Photo By Jamesfranklingresham - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=22189516

When a measure

becomes a target,

it ceases to be

a good measure.

An adage in economics known as Goodhart’s Law:

Charles Goodhart was an economic advisor to the UK Government under Margaret Thatcher. Thatcher’s approach to monetary policy included setting targets for specific
financial indicators.

Any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes.

In other words - when you set a target for a metric, the odds are the metric no longer means what it once did and therefore your target doesn’t mean what you think it
does.

@Agile2022 :: @DocOnDev

- W. Edwards Deming

People with
targets and jobs
dependent upon

meet ing them will
probably meet the

targets - even i f
they have

to destroy the
enterpr i se to do i t.

@Agile2022 :: @DocOnDev

Focus on
Trends ,

not targets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pay attention to how the values are trending, not what the values are. Are they trending consistent with the team’s strategy?

@Agile2022 :: @DocOnDev

Campbell ’ s Law

@Agile2022 :: @DocOnDev

Campbell ’ s

Law

When a measure

becomes a

form of evaluation,

it distorts that which

is being measured.

By Source, Fair use, 
https://en.wikipedia.org/w/index.php?curid=4155776

Social Sciences - Donald T. Campbell

"The more any quantitative social indicator is used for social decision-making, the more subject it will be to corruption pressures and the more apt it will be to distort and
corrupt the social processes it is intended to monitor.”

By Source, Fair use, https://en.wikipedia.org/w/index.php?curid=4155776

@Agile2022 :: @DocOnDev

Avoid
turning
metr ics

into
Incent ives

Comparing teams 
Rewarding/recognizing teams that do “better” on their metrics 
talking about measures more than the desired outcomes

@Agile2022 :: @DocOnDev

Perverse Incent ives

@Agile2022 :: @DocOnDev

Perverse

Incent ives

An unintended result, 
contrary to the interests 
of the incentive makers

@Agile2022 :: @DocOnDev

Pe r v e r s e I n c e n t i v e s
An unintended result, contrary to the interests of the incentive makers

I think it is interesting how often you’ll hear a manager say, the employees gamed the system.

Let’s get this straight right now.

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

How Do You
Forecast?

Ways they forecast now.

Ways they know that you’re going to make it to the deadline given some quantity of work and a target date.

@Agile2022 :: @DocOnDev

Forecast ing

Velocity typically has three related uses:

A gauge when planning our iterations (sometimes referred to as making a commitment)

Determine if we are tracking to our iteration goals or release goals

Means of forecasting. Sort of.

Among these, forecasting is probably the most important and the hardest to do.

@Agile2022 :: @DocOnDev

Forecast ing
(Sort Of)

We sort of forecast

@Agile2022 :: @DocOnDev

Forecast ing
(Sort Of)

We take our current velocity or the average velocity of the past few iterations and we divide it into our best current guess for the work that needs to be done.

Maybe we graph our best current guess for the work that need to be done and graph our burn with an extended trend line. Where the work line and trend line cross
<next> is when we’ll be done.

@Agile2022 :: @DocOnDev

Are these
forecasts
Accurate?

No. They do not tend to be particularly accurate. Even if we might imagine they are precise, they are not accurate.

@Agile2022 :: @DocOnDev

Are these
forecasts
def in ite?

No. They are not definite.

@Agile2022 :: @DocOnDev

Are these
forecasts
Probable?

Maybe. They’re possible, for sure. But how probably are they? How much confidence do you have in your forecasts when using the common technique?

@Agile2022 :: @DocOnDev

How Probable?

The truth is, we don’t know this. We do not know the mathematical probability of hitting our dates.

@Agile2022 :: @DocOnDev

Gett ing To
Probable

Metr ics
Better

• Velocity

• Backlog Size

• Start Date

• Split Rate

But there is a way to get better at this. <next>

You’ll need to know your velocity and backlog size - so far this sounds familiar… <next>

You’ll also need your start date and split rate.

The start date is usually now or in the future. We are forecasting work remaining, not work already done.

The split rate is the percentage of growth - say one story in the backlog ends up being two or more stories when you execute on it. This happens with progressive
elaboration.

@Agile2022 :: @DocOnDev

Focused
Ob ject ive

http://focusedobjective.com/
free-tools-resources/

Metr ics
Better

Go get the Forecasting tool from Focused Objective. Here’s the URL.

@Agile2022 :: @DocOnDev

Better
Metr ics

Estimate

1 Week

You enter the start date

Your low and high guess for stories remaining - this are often the same number, but not always

Your split rate - if you have not been tracking split rate, you can look at the percentage of growth of your overall backlog over the past few iterations.

Your velocity increment - this is used to bucket into iterations

And your velocity or throughput history. I use the high and low from the past few iterations.

Be honest with the numbers. You can use this tool to create a forecast that looks how you want OR you can use this tool to create a realistic forecast based on
probability. The latter is smart. The former is a waste of this tool.

EXIT TO EXCEL TO SHOW THIS LIVE

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

What I s  
Velocity?

To figure out WHY this is, let’s start with WHAT it is…

@Agile2022 :: @DocOnDev

What I s Velocity?
#AgileMetrics :: @DocOnDev

@Agile2022 :: @DocOnDev

What I s
Velocity?

@Agile2022 :: @DocOnDev

What I s
Velocity?

Work Units Over Time

Work Units over Time - technically, that would be speed. Velocity requires a vector.

Work Units over Time toward delivery of value - Velocity...?

@Agile2022 :: @DocOnDev

What I s
Velocity?

Lagging Indicator

Lagging Indicator

Tells us what happened.

Lagging Indicators confirm long-term trends, but are not good predictors.

I overheard a discussion the other day where someone said, “meteorologists/climatologists cannot be trusted. They claim they know climate trends, but they can’t even
tell you what the weather will be tomorrow.”

If the unemployment rate is rising, the economy has been doing poorly.

We know how it is trending, but we don’t know specifically where it will go next.

Lagging indicators are good for trends over broad cycles. You know that sales will be higher around Christmas every year. But you don’t know what sales will be.

@Agile2022 :: @DocOnDev

What I s
Velocity?

Measure of a Complex
System

Tells us about the end result (sort of), but nothing about the process by which that result was attained

@Agile2022 :: @DocOnDev

Velocity  
I s A  

Lagging Indicator 
of 

a Complex System

That’s interesting, but it doesn’t help me reason about it much.

So I got to thinking about it - what’s something that is a lagging indicator for a complex system? Something that might help me think about this more clearly…

@Agile2022 :: @DocOnDev

A 
Lagging

Indicator 
of a  

Complex
System

Your body-weight is a lagging indicator.

What are things that affect your body weight?

Diet, Exercise, Genetics, Physical Health, Mental Health, Environment, Work, Stress, Social Network

Does any given body weight mean you are healthy?

Does any given velocity mean your project is healthy?

@Agile2022 :: @DocOnDev

How might
someone

lose
we ight?

Let’s say you want to lose

10 pounds

5 kilograms

Reduce calories, change in exercise, more sleep, cut back on certain foods

Consume nothing but amphetamines

Stop drinking all liquids

Smoke crack

Cut off your forearm

The point here is simple:

Moving the metric in the right direction doesn’t necessarily improve the health of the overall system and MAY even hurt it.

@Agile2022 :: @DocOnDev

How might
a team

increase
velocity?

Limit WIP, reduce batch size, reduce dependencies

Skip testing

Cut corners on internal quality

Work more hours per week

Increase all estimates

The point here is simple:

Moving the metric in the right direction doesn’t necessarily improve the health of the overall system and MAY even hurt it.

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

Yeah…  
So I ’m

gonna need
you to g ive

me more
velocit i e s ,

Okay?

With good intentions or not, when bosses set goals for or ask for improvements in indicators like this, they are almost guaranteed to create problems rather than benefits.

First off, there is a law in economics known as Goodhart’s Law which states:

Any observed statistical regularity will tend to collapse once pressure is placed upon it for control purposes.

In other words - when you set a target for a metric, the odds are the metric no longer means what it once did and therefore your target doesn’t mean what you think it
does.

Furthermore, properly incentivized, people will hit the target by whatever means necessary.

@Agile2022 :: @DocOnDev

Pe r v e r s e I n c e n t i v e s
an unintended result, contrary to the interests of the incentive makers

I think it is interesting how often you’ll hear a manager say, the employees gamed the system.

Let’s get this straight right now.

@Agile2022 :: @DocOnDev

Managers game the
system by sett ing
goals for measures .

The rest i s natural
consequence .

Rewards for # of bugs found - lower importance, duplicate bugs reported
Reward for code coverage - increased coverage/decreased test quality
Reward for higher velocity - more brittle code, lower test coverage, more bugs

@Agile2022 :: @DocOnDev

Var iable
Velocity

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

This is a velocity chart for a team over the course of 10 iterations

@Agile2022 :: @DocOnDev

Dr . W
Edwards

Deming

“What matters is not
setting quantitative goals
but fixing the method by
which those goals are
attained”

Deming ~ “Setting quantitative goals doesn’t matter. Fix the methods underlying those goals.”

So let’s look at some common causes of variable velocity.

@Agile2022 :: @DocOnDev

Var iable
Velocity

Deferred
Maintenance

No time to clean the code

No time to refactor

No time to upgrade the infrastructure

These all gum up the system, causing it to move slower and slower in the name of speed

@Agile2022 :: @DocOnDev

Deferred
Maintenance
Gums up the

system and
causes i t to

move
slower .

No time to clean the code

No time to refactor

No time to upgrade the infrastructure

These all gum up the system, causing it to move slower and slower in the name of speed

@Agile2022 :: @DocOnDev

Var iable
Velocity

Batch Size

This is variable story sizes or consistently large stories

This is stories that don’t get delivered until the entire feature is ready

This is features that don’t get delivered until the release is ready

Inconsistent batch sizes cause variability in delivery, which results in lower predictability and may result in bottlenecks.

@Agile2022 :: @DocOnDev

The b igger
the Batch

S ize , the
greater the

r i sk .

This is variable story sizes or consistently large stories

This is stories that don’t get delivered until the entire feature is ready

This is features that don’t get delivered until the release is ready

The bigger the batch, the greater the risk. The greater the risk, the more planning required. The more planning required, the more time it takes. The more time it takes, the
bigger the batch.

This is a vicious cycle

@Agile2022 :: @DocOnDev

Var iable
Velocity

Work In Progress

The more items in flight at any one time, the longer each individual item takes to get to completion.

This creates the illusion of progress through business, but impedes progress in terms of actual value delivered sooner.

@Agile2022 :: @DocOnDev

L im it Work
In Progress

Stop
Start ing .

Start
F in i sh ing .

Don’t start more work. Focus on finishing the work you’ve already started.

@Agile2022 :: @DocOnDev

Metr ics

Better

@Agile2022 :: @DocOnDev

Deferred
Maintenance
Gums up the

system and
causes i t to

move
slower .

Metr ics
Better

No time to clean the code

No time to refactor

No time to upgrade the infrastructure

These all gum up the system, causing it to move slower and slower in the name of speed

@Agile2022 :: @DocOnDev

Code
Complex i ty

Metr ics
Better

You can use Cyclomatic or ABC Complexity.

Cyclomatic Complexity, also known as McCabe’s number is based on nodes and edges in the code tree. It is essentially a count of linearly independent paths in the
code. It was designed as a means of determining the number of tests you need for a piece of code.

ABC is similar to Cyclomatic Complexity, but is based on Assignments, Branches, and Conditionals, so it is a bit more robust. It was originally intended to be used as a
means of forecasting.

Today, both of these measures are used as a proxy for code quality.

@Agile2022 :: @DocOnDev

Code Complex i ty
1 2 22 3

Metr ics
Better

A strictly linear program has a cyclomatic complexity of 1 <next>

Whereas a Do Until, While, and For all have <next> a complexity of 2

A case statement <next> grows in complexity by one for every option<next>

@Agile2022 :: @DocOnDev

Code Complex i ty
1 2 22 4

Metr ics
Better

And if those case statements each exit the program, <next>

@Agile2022 :: @DocOnDev

Code Complex i ty
7

Metr ics
Better

the complexity increases by 2 for every new option

Why do we care about this?

Because <next>

@Agile2022 :: @DocOnDev

There i s a
pos it ive

correlat ion
between

Code
Complex i ty

and defects .

Metr ics
Better

The higher the complexity, the more likely a method is doing too much or has low cohesion.

The more responsibility a method has or the lower the cohesion, the higher the likelihood there are defects lurking therein.

Many conditionals can be collapsed with some refactoring - You can take look at basic inheritance and the factory pattern for more on this.

@Agile2022 :: @DocOnDev

Escaped
Defects

Metr ics
Better

Count of defects found in production.

If at all possible log the defect against the release during which it was introduced. For some defects, this will be easy, but others might not rear their heads for weeks or
even months.

If it is in Development or UAT, it is not an escaped defect.

@Agile2022 :: @DocOnDev

Escaped Defects

0

0.75

1.5

2.25

3

April May June July

Metr ics
Better

This is informative, but can be slightly misleading.

The number of defects escaped is devoid of any other information.

If, however, we look at defects as a percentage of throughput, we get a view into defect density and we can actually compare team to team a bit better.

@Agile2022 :: @DocOnDev

Throughput

0

22.5

45

67.5

90

April May June July

Metr ics
Better

This is informative, but can be slightly misleading.

The number of defects escaped is devoid of any other information.

If, however, we look at defects as a percentage of throughput, we get a view into defect density and we can actually compare team to team a bit better.

@Agile2022 :: @DocOnDev

Throughput (Velocity)

0

22.5

45

67.5

90

April May June July

Metr ics
Better

This is informative, but can be slightly misleading.

The number of defects escaped is devoid of any other information.

If, however, we look at defects as a percentage of throughput, we get a view into defect density and we can actually compare team to team a bit better.

@Agile2022 :: @DocOnDev

Escaped Defects & Throughput

0

0.75

1.5

2.25

3

April May June July
0

22.5

45

67.5

90

April May June July

Metr ics
Better

This is informative, but can be slightly misleading.

The number of defects escaped is devoid of any other information.

If, however, we look at defects as a percentage of throughput, we get a view into defect density and we can actually compare team to team a bit better.

@Agile2022 :: @DocOnDev

Escaped Defects by Throughput

0
0.75

1.5
2.25

3

April May June July
0

22.5
45

67.5
90

April May June July

0%

1.75%

3.5%

5.25%

7%

April May June July

Metr ics
Better

This is informative, but can be slightly misleading.

The number of defects escaped is devoid of any other information.

If, however, we look at defects as a percentage of throughput, we get a view into defect density and we can actually compare team to team a bit better.

@Agile2022 :: @DocOnDev

Metr ics

Better

@Agile2022 :: @DocOnDev

The b igger
the Batch

S ize , the
greater the

r i sk .

Metr ics
Better

The bigger the batch size, the greater the risk.

One seemingly logical approach to this is to use story size as a proxy for batch size. And that can work, but I’d like to suggest some alternatives.

@Agile2022 :: @DocOnDev

Release
Frequency

Metr ics
Better

@Agile2022 :: @DocOnDev

Release Frequency

Metr ics
Better

0

1

2

3

4

April May June July

Assuming all other things equal, the more often we release, the necessarily smaller the release.

So we can effectively use release frequency as a proxy for release size. Our release size IS our batch size.

@Agile2022 :: @DocOnDev

Small
Releases  

Beat  
B ig 

Releases .

Metr ics
Better

small releases provide numerous advantages over big releases

Optionality, flexibility, learning, and safety (yes safety. Small releases have a smaller surface area and a smaller impact. They provide less risk.) -

@Agile2022 :: @DocOnDev

Coupl ing

Metr ics
Better

Coupling refers to the dependencies associated with a piece of code.

Afferent coupling is the number of inbound dependencies

Efferent coupling is the number of outbound dependencies

@Agile2022 :: @DocOnDev

Coupl ing

Metr ics
Better

Coupling refers to the dependencies associated with a piece of code.

Afferent coupling is the number of inbound dependencies

Efferent coupling is the number of outbound dependencies

@Agile2022 :: @DocOnDev

Coupl ing

Metr ics
Better

Coupling refers to the dependencies associated with a piece of code.

Afferent coupling is the number of inbound dependencies

Efferent coupling is the number of outbound dependencies

@Agile2022 :: @DocOnDev

Coupl ing

Metr ics
Better

The more tightly coupled the code, the more places you need to make changes when new functionality is introduced. The more places you need to make changes, the
larger your batch size.

Tools like NDepend or JDepend will graph and quantify your coupling. The lower, the better.

@Agile2022 :: @DocOnDev

High Coupl ing

Metr ics
Better

These could be any number of things in a code-base

Shopping Cart and Cash Register

Employee Management and Payroll System

They seem to know a lot about one another.

Changes to Cash Register would potentially break Shopping Cart. Does that really make sense?

Changes to the payroll system could potentially break the Employee. Does that really make sense?

In addition, they seem to have a lot of connection paths internally.

@Agile2022 :: @DocOnDev

Reduced Coupl ing

Metr ics
Better

We can start by separating these large logical items and adding an adapter or API that insulates the external components from internal changes.

We can usually reorganize the internal code as well to reduce the connections.

@Agile2022 :: @DocOnDev

Low Coupl ing

Metr ics
Better

Polymorphism

Composition

Various Strategies or Patterns

Code that has low coupling tends to have higher cohesiveness as well. The code in the class is logically related and serves a single purpose.

@Agile2022 :: @DocOnDev

Metr ics

Better

@Agile2022 :: @DocOnDev
Metr ics

Better

L im it Work
In Progress

Stop
Start ing .

Start
F in i sh ing .

Don’t start more work. Focus on finishing the work you’ve already started.

@Agile2022 :: @DocOnDev

L im it your Work In Progress

Tasks of 8 hours each

8 hours 16 hours 24 hours 32 hours

Start All at Once

Metr ics
Better

Complete them one at a time, the first item will be done 8 hours after starting and all will be complete in 32 hours

@Agile2022 :: @DocOnDev

L im it your Work In Progress

Start All at Once

8 hours 16 hours 24 hours 32 hours 40 hours 48 hours8 hours 16 hours 24 hours 32 hours

Metr ics
Better

Complete them in parallel, working on each one for 2 hours and we’d hope that the first one is done in 26 hours with all complete in 32 hours. <next>

But there is a tax for context switching. Studies have shown this tax is usually about 20% for each new item — compounded. So, in reality, it will take approximately
48.75 hours to complete all four tasks.

@Agile2022 :: @DocOnDev

L im it your Work In Progress

8 hours 16 hours 24 hours 32 hours

Finish One at a Time

Start All at Once

8 hours 16 hours 24 hours 32 hours 40 hours 48 hours

Metr ics
Better

Complete them in parallel, working on each one for 2 hours and we’d hope that the first one is done in 26 hours with all complete in 32 hours. <next>

But there is a tax for context switching. Studies have shown this tax is usually about 20% for each new item — compounded. So, in reality, it will take approximately
48.75 hours to complete all four tasks.

@Agile2022 :: @DocOnDev

Better
Metr ics3 4 5 6 7 8 9 10

Cumulat ive
Flow

Diagram

@Agile2022 :: @DocOnDev

Cumulat ive Flow Diagram
Sample Backlog

@Agile2022 :: @DocOnDev
Metr ics

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Deployed
Ready for Approval
In Testing
In Progress
Ready To Start

D
one

N
ot D

one W
IP

Lead Time

Cycle

Scope

Cumulat ive Flow Diagram

Better

Looking at this diagram, we can see <next>

work done and work not done <next>

The amount of Work in Progress at any given time <next>

The lead time - hey wouldn’t it be nice to hay, isn’t that nice <next>

And the cycle time - the amount of time an item is actually being worked on <next>

Finally, we can see changes in scope whenever our top line moves.

For a team that is operating well, this graph has relatively smooth lines that move together up and to the right

@Agile2022 :: @DocOnDev

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

Metr ics
Better

Remember this chart from earlier?

We couldn’t say for sure what was the issue for this team.

@Agile2022 :: @DocOnDev

Same Team 
Same Data 

D i f f e r e n t  
Pe r s p e ct i v e

Metr ics
Better

@Agile2022 :: @DocOnDev
Metr ics

0

25

50

75

100

1 2 3 4 5 6 7 8 9 10

Deployed
Ready for Approval
In Testing
In Progress
Ready To Start

Better

Can anyone tell me what is “wrong” with this team?

Product owner is a traveling salesperson. On the road, doesn’t have time. Comes back and approves and then adds to the backlog.

#CodeStock :: @DocOnDev

@Agile2022 :: @DocOnDev

Metr ics are not for managers .

@Agile2022 :: @DocOnDev

Metr ics are not for managers .

Just

@Agile2022 :: @DocOnDev

Metr ics are not Just for managers .

Metr ics are for Teams .

@Agile2022 :: @DocOnDev

Metr ics are for Teams .

@Agile2022 :: @DocOnDev

Escape
Velocity

Thank You!

Everybody stand up.

I’ll let you know when to sit down. I won’t make you stand long, I promise.

We’re here today to talk about better metrics for agile teams.

Let’s start with Velocity <next>

@Agile2022 :: @DocOnDevhttp://leanpub.com/escapevelocity

Send a blank email to
onbelay@SendYourSlides.com
with the subject line:
EscapeVelocity

To get all of the supporting material, send a blank email to onbelay@sendyourslides.com with the subject line EscapeVelocity (ALL ONE WORD)

http://leanpub.com/escapevelocity
mailto:onbelay@sendyourslides.com

Helvetica Neue Regular
Helvetica Neue Bold
Helvetica Neue Thin
!"#"$%&'

Title
Title Small
Subtitle
Body
Body Small
Caption

()%*+
-Attribution

! " #
http://fontawesome.io/cheatsheet/

