

Environmental Impact of Digital Products

Archana Joshi Head – IT Strategy, LTI – Larsen & Toubro Infotech

Note: The views expressed in the presentation are solely of the presenter and do not represent those of the company /clients she is associated with

20+ yrs in IT Developer - Scrum Master -Transformation Agent -Tech Incubator

A Minute on the Internet in 2021

Estimated amount of data created on the internet in one minute NETFLIX 11 28,000 subscribers 2m views watching 0 ŗ 1.6m USD 695,000 spent online stories shared in 9,132 2m Swipes connections made 60 Sec 69m 197.6m messages sent Emails sent J TikTok 500 hours 5,000 of content uploaded downloads Source: Lori Lewis via AllAccess

Digital Jury

3D PRINTED ARTIFICIAL ORGANS

Digital Clothes

To meet this change

enterprises need to invest in supporting the digital paradigm

202x truly a "TechDecade"

107.9

Global spending on digital transformation will reach \$6.8 trillion by 2023 equivalent to GDP of 2 continents

115.49

102.3

- IDC

While we are doing all this

are we doing it responsibly?

The Paris Agreement is a legally binding international treaty on climate change.
It was adopted by 196 Parties in Paris, on 12 December 2015 and entered into force on 4 November 2016.

CEOs' Top 10 Strategic Business Priority Areas for 2022-2023

Summary Top Three Mentions, Coded Responses

Gartner

Source: Gartner © 2022 Gartner, Inc. and/or its affiliates. All rights reserved. 1782534

SCOPE 1

Direct Emissions

Owned Assets

- Facilities
- Equipment
- Vehicles
- Onsite landfills

SCOPE 2

Indirect Emissions Energy Purchased

- Purchased electricity
- Purchased heating
- Purchased cooling

SCOPE 3

All Other Indirect Emissions 3rd Party

- Transportation
- Distribution
- Waste
- Energy and fuel
- Leased assets
- Travel

Hardware Emissions

 These are the emissions due to the servers, data storage, sensors and devices

Software package Emissions

 These are the emissions due to how software is developed and used Is it true? The way software is designed affects the carbon emissions?

You're not wrong there

Let's See an Example

Figure 3: Evolution 2013-2025 of the share of digital technology in GHG emissions. The share of digital technology in GHG emissions. [Source: [Lean ICT Materials] Forecast Model. Produced by The Shift Project from data published by (Andrae & Edler, 2015)

A program written in Python consumes

75.88 times more energy than a program written in C

- University Research in Portugal

Training an Al model produces

CO2 equivalent of ~5 times the lifetime emissions of a car

- MIT Technology Review

Bitcoin's annual electricity consumption is more than three times that of New Zealand

- Energetics.au

How many trees to be planted per year to offset effects of data generated in US?

Carbon offsetting is not enough

There is a pressing need to relook at software engineering practices to curb the overall carbon footprint.

Review -Recycle-

Reduce

Start by asking these 5 questions

1. Do we really need these features?

2. Can we remove the low priority ones?

3. Is similar feature available else where?

4. Can I share the developed feature with others?

5. Do we really need the software "Always ON"?

And then follow Green Software practices

1. Move to Cloud

Opting for a cloud server which is based 100% on green energy instead of an on-premise server that is powered by non-green energy can reduce carbon emission by up to 70%

2. Change in Architecture

Moving towards event-based computing, serverless computing, containerization can reduce the response time, increase efficiency and reduce the carbon footprint

3. Coding/ Language Preferences

Code restructuring, reducing the lines of code, making the right language choices can reduce the CPU runtime and result in reduction of energy consumption election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.active "Selected" + str(modifie irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_ob

int("please select exactle

OPERATOR CLASSES -----

x mirror to the selecter ect.mirror_mirror_x" or X"

ontext):
 ontext.active_object is not

4. Database design

Delete unnecessary data while using data life-cycle policies. Prevent data movement across network boundaries as much as possible.

5. Carbon neutral solutions

When buying 3rd party software packages, check for their emissions data and choose carbon neutral solutions

CARDANO

6. Smart Al

Smart Al should focus on exploring possibilities to shift a company's Al training and processing to solutions that are greener

How do I measure?

Overview							
TECHNICAL SIZE 6,717 Lines Of Code	TQI 3.48 1 2 3 4	ROBUSTNESS 3.41	EFRCIENCY 2.97	SECURITY 3.48	CHANGEABILITY 3.56	TRANSFERABILITY 3.51	GREEN IT INDEX 3.26
TOP PRIORITY 1 Violations	FUNCTIONAL & ENHANCEMENT 72 OMG-Compliant Automated FPs	1 CRITICAL VIOLATIONS	TOP CRITICAL RULES Rules Avoid using a web service with Py Avoid method invocation in a loop Avoid defining and calling functi Avoid using eval) (Typescript) Avoid using web service calls ins	Checked Failed (%) 29 3% 159 0% 17 0% 298 0% 17 0%	TECHNOLOGIES OVERVIE By TQI score Technologies TQ Python 3.14 HTMLS 3.7	W I Critical Violations 9 1 3 0	
MODULES MAPPING Size: Lines of Code, Color: 4 0 3 0 HTML5/Jav	Total Quality Index score	TOP RISKIEST MODULES By Efficiency score Modules Efficie Python 2 HTML5(jeascript 3	ncy Critical Violations 242 1 1.92 0				

Underlying Technology criterion to assess the application's Green IT Index

Complexity – SQL Queries

Ť

?

ŝ

÷Q:

- **Programming Practices** Error and Exception Handling | Unexpected behaviors
 - Efficiency Network, Data and Disk space management
 - **Performance** SQL and Data Handling performance
 - Secure Coding- Weak security features, Time and State
 - Efficiency Call in loops

What do enterprises need to do to build the Green Software culture?

Some links to get you started

- 1. Principles of Green Software Engineering: https://principles.green/
- 2. Tool that helps in calculating the Green Debt of your software: https://www.castsoftware.com/green-it
- 3. Measure and reduce website's CO2 emissions: https://greenframe.io/
- 4. Cloud Carbon Emissions Measurement and Analysis Tool: https://www.cloudcarbonfootprint.org/
- 5. Machine Learning Emissions Calculator: https://mlco2.github.io/impact/#compute
- 6. Not for profit think tank that works on areas of climate change: https://theshiftproject.org/wpcontent/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf

Be Digital Be Responsible

Thank You Archana Joshi

https://www.linkedin.com/in/arcjoshi/

Total											
	Energy			Time			Mb				
(c) C	1.00		(c) C	1.00		(c) Pascal	1.00				
(c) Rust	1.03		(c) Rust	1.04		(c) Go	1.05				
(c) C++	1.34		(c) C++	1.56		(c) C	1.17				
(c) Ada	1.70		(c) Ada	1.85		(c) Fortran	1.24				
(v) Java	1.98		(v) Java	1.89		(c) C++	1.34				
(c) Pascal	2.14		(c) Chapel	2.14		(c) Ada	1.47				
(c) Chapel	2.18		(c) Go	2.83		(c) Rust	1.54				
(v) Lisp	2.27		(c) Pascal	3.02		(v) Lisp	1.92				
(c) Ocaml	2.40		(c) Ocaml	3.09		(c) Haskell	2.45				
(c) Fortran	2.52		(v) C#	3.14		(i) PHP	2.57				
(c) Swift	2.79		(v) Lisp	3.40		(c) Swift	2.71				
(c) Haskell	3.10		(c) Haskell	3.55		(i) Python	2.80				
(v) C#	3.14		(c) Swift	4.20		(c) Ocaml	2.82				
(c) Go	3.23		(c) Fortran	4.20		(v) C#	2.85				
(i) Dart	3.83		(v) F#	6.30		(i) Hack	3.34				
(v) F#	4.13		(i) JavaScript	6.52		(v) Racket	3.52				
(i) JavaScript	4.45		(i) Dart	6.67		(i) Ruby	3.97				
(v) Racket	7.91		(v) Racket	11.27		(c) Chapel	4.00				
(i) TypeScript	21.50		(i) Hack	26.99		(v) F#	4.25				
(i) Hack	24.02		(i) PHP	27.64		(i) JavaScript	4.59				
(i) PHP	29.30		(v) Erlang	36.71		(i) TypeScript	4.69				
(v) Erlang	42.23		(i) Jruby	43.44		(v) Java	6.01				
(i) Lua	45.98		(i) TypeScript	46.20		(i) Perl	6.62				
(i) Jruby	46.54		(i) Ruby	59.34		(i) Lua	6.72				
(i) Ruby	69.91		(i) Perl	65.79		(v) Erlang	7.20				
(i) Python	75.88		(i) Python	71.90		(i) Dart	8.64				
(i) Perl	79.58		(i) Lua	82.91		(i) Jruby	19.84				